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Abstract

A comprehensive numerical investigation of incompressible flow about fixed cylinder pairs is performed. Cylinder

arrangements include tandem, side-by-side, and staggered and Reynolds numbers of 80 and 1000 are considered. A

second order Streamline Upwind Petrov–Galerkin projection scheme is used along with routines for interactive steering

and dynamic meshing to solve the 2-D incompressible Navier–Stokes equations efficiently on a large number of

different configurations. Qualitative and quantitative comparisons with published experimental data are made which

show the ability of the present numerical method to capture complex, unsteady flow features. Experimentally observed

flow physics such as hysteresis effects in tandem arrangements and bistable biased gap flow in tandem arrangements

have been reproduced by the present numerical method. Furthermore, an extensive series of staggered simulations in

experimentally classified interference regimes has been performed.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many engineering structures such as offshore risers, pipelines, and transmission lines involve multiple bluff bodies in

proximity. Depending on the configuration of these bodies relative to the flow, a wide variety of interference

phenomena can be observed. Even the simplest case of two identical circular cylinders presents a rich spectrum of

different flow features.

This paper describes a comprehensive numerical investigation of interference effects between rigid circular cylinders

in a uniform, 2-D incompressible flow. To enable the most complete and efficient analysis of the problem, routines for

interactive simulation and dynamic meshing have been coupled to an accurate and efficient incompressible flow solver.

These interactive techniques allow a detailed study of transitions between flow states and hysteresis effects, as well as

rapid simulation of a large number of cylinder spacings.

1.1. Previous work

The problem of flow about cylinder pairs has attracted a great deal of research experimentally and, more

recently, numerically. Experimental work dates back to early aeronautical experiments by Pannell et al. (1915) on

wires and Biermann and Herrnstein (1933) on aircraft struts. Results are presented for tandem arrangements in which

one cylinder is directly in the wake of the other, side-by-side arrangements in which the cylinders are arranged

transverse to the incoming flow, and staggered arrangements in which the cylinders are arbitrarily configured. Both the
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flow field and force coefficients depend highly on the configuration and spacing of the cylinder pair due to both wake

and proximity-induced interference effects. Excellent summaries of results in each of these arrangements can be found

in works by Zdravkovich (1984, 1985), Chen (1987), Blevins (1990) and Sumner et al. (2000).

Experimental studies of cylinder pairs in a tandem orientation presented by Thomas and Kraus (1964), Nagai and

Kurata (1971), Ishigai et al. (1972), Kostic and Oka (1972), Tanida et al. (1973) and King and Johns (1976) demonstrate

the presence of two major flow regimes with a complex transition region between them. For closely spaced cylinders, the

flow separates behind the first cylinder and reattaches to the second one, while for larger separations vortex shedding

occurs behind both cylinders. For intermediate spacings, flow physics such as hysteresis effects (Zdravkovich, 1984) and

bi-stable states (Kiya et al., 1992) have been observed experimentally. Similarly, studies of side-by-side cylinder pairs

performed by Bearman and Wadcock (1973), Kiya et al. (1980), Zdravkovich (1982) and Williamson (1985) show two

major flow regimes. Closely spaced cylinder pairs exhibit a single coupled vortex street while more distant cylinders shed

distinct but synchronized vortices in their wake. Again, intermediate spacings lead to complex flow physics such as the

bi-stable biased gap flow observed by Kim and Durbin (1988). Staggered arrangements of cylinder pairs show a

combination of both the wake-induced interference found in the tandem configuration and proximity-induced

interference in the side-by-side configuration. Classification of these effects in a variety of spacings has been performed

by Zdravkovich (1977, 1984).

Numerical work on this problem is considerably more sparse. Chang and Song (1990) used a vorticity-stream-

function method to compute the flow about a pair of cylinders in two arrangements at Re ¼ 100: Flow visualization

and force coefficients were shown to compare well with experimental publications. More recently, Mittal et al.

(1997) used a stabilized finite element method to simulate three configurations at Re ¼ 100 and 1000. Again, good

comparison with experimental results was made; furthermore the results showed that Re ¼ 1000 flow was sufficient to

reproduce flow features observed in experimental results gathered at a much higher Reynolds number. Finally, Schulz

and Kallinderis (1998a) used a finite volume method to compute the flow and structural response for a single

arrangement at Re ¼ 110:

1.2. Organization of paper

A more detailed description of the problem and the governing equations will first be given in Section 2.

Next, in Section 3 we will briefly describe the numerical method used to solve the incompressible Navier–Stokes

equations in addition to the interactive simulation and mesh update routines used for the interactive runs. In

Section 4 we present extensive numerical results for a variety of different configurations including both quantitative

and qualitative comparisons with experimental data. Finally, in Section 5 we draw some conclusions and propose

future work.

2. Problem definition

The problem being considered is flow about a pair of identical circular cylinders. Fig. 1 shows the two cylinders of

diameter D with longitudinal separation L and transverse separation T relative to the incoming flow UN:
In the description of results found in this paper, the nondimensional values L=D and T=D will be used to identify the

configuration. Results will be presented for tandem orientations with T=D ¼ 0; side-by-side orientations with L=D ¼ 0;
and staggered orientations with L=Da0; T=Da0:

L

D

D

TU∞

Fig. 1. Configuration of cylinder pair.
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The flow is assumed to be 2-D and governed by the unsteady incompressible Navier–Stokes equations in Arbitrary

Lagrangian–Eulerian form (Hughes et al., 1981):

@u

@t
þ ðu� #uÞ � ru ¼ �rP þ

1

Re
r2u; ð1Þ

r � u ¼ 0; ð2Þ

where u is the flow velocity vector, #u is the mesh velocity, P is the pressure, and Re is the Reynolds number, defined by

Re ¼
UNL

n
: ð3Þ

Dirichlet boundary conditions are enforced on the inlet and farfield boundaries while Neumann conditions are

imposed on the outlet.

3. Numerical method

3.1. Finite element formulation

The mixed finite element solution of Eqs. (1) and (2) is sought. Let Vh � VhðOÞCH1ðOÞ and Sh � ShðOÞCL2ðOÞ be
finite element spaces approximating the velocity and pressure, respectively, on domain O where Dirichlet boundary

conditions are accounted for in the velocity space. The semi-discrete finite element form of the Navier–Stokes equation

is: find uhAVh and phASh such thatZ
O
wh �

@uh

@t
þ ðuh � #uhÞ � ruh

� �
dOþ

1

Re

Z
O
rwh : ruh dOþ

Z
O
r � whph dO ¼ 08 whAVh; ð4Þ

Z
O

qr � uh dO ¼ 0 8 qASh: ð5Þ

Using the standard notation for mass, advection, diffusion, and gradient matrices leads to the following condensed

form:

M’uþ ðKþNðu� #uÞÞuþ CP ¼ 0; ð6Þ

CTu ¼ 0: ð7Þ

3.2. Projection method

The semi-consistent mass projection scheme introduced by Gresho (1990) and Gresho and Chan (1990) is the basis

for the timestepping scheme used in the present analysis. In contrast to typical semi-implicit projection schemes, the

advective term is linearized and treated implicitly while BDF2 timestepping (Guermond and Quartapelle, 1998) is used

in place of Crank–Nicolson. The timestepping scheme used is as follows.

Given data at timestep n and n � 1 (un�1; un and Pn), solve:

3M*u� 4Mun þMun�1

2Dt
þ K*uþNðun � #uÞ*u ¼ �MM�1

L CPn ð8Þ

for the intermediate velocity *u where un is the extrapolated velocity,

un ¼ 2un � unþ1: ð9Þ

Then, compute the final discretely divergence-free velocity unþ1 and the updated pressure Pnþ1 from the projection

step:

CTM�1
L CðPnþ1 � PnÞ ¼ CT *u; ð10Þ

unþ1 ¼ *u�M�1
L CðPnþ1 � PnÞ: ð11Þ
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Eq. (8) represents nonsymmetric sparse system which is formed at each timestep and solved for each velocity

dimension. This system is solved using a diagonally scaled conjugate gradient squared algorithm (Golub and van Loan,

1996). Eq. (10) is solved using an iterative conjugate gradient method proposed by Cahouet and Chabard (1988) for the

Stokes problem. The advantage of this method is that it does not require the explicit formation of the pressure poisson

Matrix (PPE) on the left-hand side matrix of Eq. (10). Since this matrix must generally be formed globally rather than

element-wise, the cost of reassembling it every timestep when using a dynamic mesh can be great (Nomura and Hughes,

1992). Thus, although the algorithm of Cahouet and Chabard involves more effort per timestep to solve, it is far more

efficient since the PPE matrix need not ever be explicitly formed.

3.3. SUPG stabilization

The SUPG method of Brooks and Hughes (1982) has been used to allow high Reynolds number simulation on

reasonably coarse meshes. This method adds element level residuals to the left-hand side of Eq. (8) of the form

X
e

Z
Oe

tSUPG
e uh � rwh @uh

@t
þ uh � ruh �

1

Re
r2uh �rPh

� �
dO; ð12Þ

where the doubly asymptotic approximation is used for the SUPG coefficient

tSUPG
e ¼ jjuh

e jj
he

2
z; ð13Þ

z ¼
Reh

3
; Rehp3;

1; Reh > 3

8<
: ð14Þ

and jjuh
e jj is the magnitude of the velocity at the centroid of element e; he is the average edge length of the element, and

Reh is the cell Reynolds number. This value of the intrinsic time, tSUPG
e approximates the optimal value for elements

with linear velocity approximations (Brooks and Hughes, 1982).

3.4. Hybrid meshes

Hybrid quadrilateral/triangular meshes are used in the present computations. These meshes, an example of which is

shown in Fig. 2, consist of a number of layers of stretched quadrilateral elements in boundary layer regions with

triangular elements used to fill the rest of the domain. The initial spacing of the quadrilateral layers is set to accurately

resolve the flow at the desired Reynolds number. The size of the triangular elements is limited by the definition of source

regions which maintain a fine triangulation in areas of interest such as the gap between the cylinders. Meshes of this

type have been successfully used in incompressible simulations in both 2-D (Kallinderis and Nakajima, 1994) and 3-D

(Chen and Kallinderis, 1998).

Fig. 2. Closeup of hybrid mesh for a cylinder pair.
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3.5. Mixed element choices

In the present simulations, the pressure field is approximated as a continuous piecewise (bi)linear function over each

(quadrilateral) triangular element. Each pressure element is subdivided into four subelements of the same type, over

which a continuous piecewise linear velocity field is interpolated. These mixed elements, shown on Fig. 3, were

introduced by Bercovier and Pironneau (1979), analyzed by Verfurth (1984) and Gunzburger (1989), and recently

implemented by Norburn and Silvester (1998) and Edis and Aslan (1998) among others. The quadrilateral and

triangular elements shown on Fig. 3 are typically referred to as pQ2Q1 and isoP2P1 elements.

These elements have the same number and location of degrees of freedom as the (bi)quadratic velocity Taylor–Hood

elements Q2Q1 and P2P1: Theoretically, the Taylor–Hood elements give a more accurate velocity solution with the same
number of degrees of freedom; however, preliminary work in this analysis showed no difference between the Taylor–

Hood elements and their linear counterparts in the class of problems being considered. The linear velocity elements do

provide a considerable simplification in implementation of the SUPG method as the second order derivatives r2u can

be eliminated from Eq. (12). Furthermore, selection of optimal intrinsic times for quadratic elements such as that given

for linear elements in Eq. (14) is nontrivial (Codina et al. 1992).

3.6. Interactive steering and mesh motion

To efficiently simulate a large number of different configurations, the ability to interactively manipulate the cylinder

spacings during the runs has been provided. This interactive steering has been used extensively in the present research,

specifically to study transition regions between states, hysteresis effects, and multiple staggered configurations.

Convenient user control over algorithmic parameters such as timestep, physical parameters such as Reynolds number,

and geometric parameters such as cylinder spacing has been provided.

Small scale motions of the geometry are handled through a simple smoothing method (Hassan et al., 1998). Other

possible methods include spring analogy methods (Batina, 1991; Farhat et al., 1998) and distance function methods

(Schulz and Kallinderis, 1998b). In the present method, the quadrilateral layers surrounding the cylinders translate

rigidly with the body while the external boundaries are held fixed. The displacement of the interior nodes is then

computed using an iterative, edge based smoothing.

For large scale changes in the geometry, simple mesh deformation is insufficient as elements will rapidly become

distorted and the quality of the mesh and solution will suffer. Thus, to accommodate the large scale deformations

desired in the present analysis, the mesh topology must change in addition to the geometry. To accomplish this, a series

of local adaptations in the mesh is performed at fixed intervals in the simulation. Adaptation is performed to preserve

both the quality and area of the elements so highly refined areas such as the gap between the cylinder pair remain

refined as the cylinder spacing is changed. The specific forms of adaptation used are edge swapping, edge splitting,

element coarsening, and element curing (Tr!epanier et al., 1993). These adaptations are all performed locally on edges or

elements, so no significant remeshing or interpolation is required.

Pressure and Velocity Node

Velocity Node

Triangular Element (iso P2-P1)Quadrilateral Element (pQ2-Q1)

Fig. 3. Quadrilateral and triangular mixed elements.
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Extensive testing of the adaptation routines and the coupling with the flow solver has been performed. These results

indicate that the quality of the mesh is adequately preserved even after a large number of adaptations. Furthermore,

although minor discontinuities in derived data (such as lift and drag) are experienced around adaptations, the long term

accuracy of the solution is not degraded.

The coupling of simulation and visualization in the present work also allows accurate computation of unsteady

particle tracks (streaklines). To produce the flow visualization presented later, massless particles are introduced into the

domain at areas of interest and allowed to advect with the flow. In particular, particles are seeded on the cylinders where

the flow separates which allows separation and reattachment phenomena to be clearly visible.

4. Results

This section presents the results of numerical simulations for tandem, side-by-side, and staggered configurations of a

cylinder pair. In each case, a description of the experimentally observed flow features at various spacings will be given,

followed by the present numerical results. Following each case, a summary of the gathered data will be presented in

tabular form.

Unless otherwise noted, all cases presented use a Reynolds number of 1000. Although this is far below the typical

Reynolds number used in experimental analysis (Re ¼ 104–105), the majority of relevant flow physics is also found in

the more computationally tractable case of Re ¼ 1000: It must be noted that approximating flow at this Reynolds

number with the 2-D, laminar, Navier–Stokes equation is unrealistic as both 3-D effects and turbulence are present and

significant. As pointed out by Mittal et al. (1997), however, who also performed numerical simulation at Re ¼ 1000;
simulations at these lower Reynolds numbers can give excellent insight into the underlying physical phenomena present

in real applications. In the case of the present work, experimentally observed interference regimes and flow physics can

be demonstrated, although the exact values of transition points and force coefficients cannot be reproduced.

The thickness of the initial quadrilateral layer around both bodies is set to 0.01 for the velocity sub-mesh (normalized

by the cylinder diameter). Grid convergence studies at Re ¼ 1000 show that this is sufficiently thin to capture the

boundary layer. The triangles in the region between the cylinders and in the near wake of the downstream cylinder are

constrained to edge lengths below 0.1. These parameters lead to a grid having between 6000 and 9000 velocity elements

depending on the cylinder spacing.

The inflow and outflow boundaries are situated to allow at least 5 diameters between the inflow boundary and the

most upstream cylinder and 15 diameters between the outflow boundary and the most downstream cylinder. The

farfield boundaries above and below the cylinders are situated to allow at least 8 diameters distance to the closest

cylinder.

The timestep was chosen at Dt ¼ 0:05 which corresponds to a CFL number of 5 based on the minimum velocity

element size. The second order implicit projection scheme described in Section 3 produces stable pressure and velocity

results even using this large timestep. Convergence studies have determined that this timestep is sufficiently small for the

problem and grids being considered. Taking a timestep this large allows a simulation to be performed through over

1000 vortex shedding cycles in a few days so the long-term stability of transient flow regimes can be efficiently studied.

4.1. Isolated cylinder

To validate the numerical method with the stated Reynolds number and mesh parameters, a simulation of an isolated

cylinder at Re ¼ 1000 was performed.

For an isolated cylinder at Re ¼ 1000; the mean drag coefficient was found to be %CD ¼ 1:51; the magnitude of the
oscillation in lift was *CL ¼ 1:40; and the Strouhal number was St ¼ 0:25: Although both the drag and Strouhal number
exceed those typically reported in experiments at this Reynolds number (Zdravkovich, 1997), they are consistent with

other 2-D numerical simulations (Mittal et al., 1997; Behr et al., 1993, Lei et al., 2000). 3-D simulations of finite length

cylinders by Schulz and Kallinderis (2000) at Re ¼ 104 demonstrated that 3-D phenomena such as oblique shedding can

impact average force coefficients, although the flow features of a 2-D simulation and a slice of a 3-D simulation are

nearly identical. Thus, the 2-D simulations in the present work are sufficient to study the flow physics underlying the

given problem.

4.2. Low Reynolds number tandem configuration

The first series of simulations of tandem cylinder pairs was performed at a low Reynolds number of Re ¼ 80: This
Reynolds number was chosen to match the parameters of Tanida et al. (1973) who studied the lift and drag coefficients
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on a pair of tandem cylinders in flowing oil at a variety of spacings. The interference drag (the measured drag minus the

drag of an isolated cylinder at the same Reynolds number) for the upstream and downstream cylinders for L=D between

3 and 10 is shown in Fig. 4 for both the experimental and present numerical results. The upstream cylinder (top line)

quickly approaches zero interference drag as the spacing is increased, indicating a rapid decline of interference effects.

The downstream cylinder (bottom line) experiences an extreme reduction in drag when in close proximity to the

upstream cylinder. As the cylinders are separated, the downstream cylinder approaches an interference drag of roughly

�0:3 in both the experimental and numerical results. This reduction in drag, due to the retarded flow about the

downstream cylinder, is shown experimentally to persist even to a separation of L=D ¼ 20: (Tanida et al., 1973)

4.3. High Reynolds number tandem configuration

At higher Reynolds numbers, three main flow regimes are observed for tandem configurations, depending on the

longitudinal separation L=D: According to the classification described by Zdravkovich (1982) and Chen (1987), these

flow regimes are as follows.

(i) Single body ðL=Dp1:1Þ: For tandem cylinders in extremely close proximity, the shear layers separating from the

upstream cylinder completely engulf the downstream cylinder. Thus, the two cylinders essential behave as a single

body.

(ii) Reattachment (1:1oL=Do3:0–3:8). For larger separations, the shear layers separating from the upstream cylinder

reattach to the downstream cylinder. Vortex shedding is observed behind the downstream cylinder but not from

the upstream cylinder. A steady recirculation region consisting of a pair of counter-rotating vortices exists in the

gap.

(iii) Two vortex streets (L=D > 3:0–3:8). For large spacings, vortex shedding is observed behind both cylinders.

Interference effects on the upstream cylinder are negligible, although wake-interference continues to affect the

downstream cylinder even for L=D beyond 50 (Zdravkovich, 1984).

The experimental classifications also include a bistable transition region between the reattachment and two vortex

streets flow regimes. In this transition region, both flow regimes are observed in experiments, with flopping between

them observed at irregular intervals (Kiya et al., 1992).
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Fig. 4. Interference drag for tandem cylinder pairs at Re ¼ 80: Comparison with experimental results of Tanida et al., 1973.
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There is a great deal of discrepancy in the literature on the exact longitudinal spacing L=D which marks the boundary

between the reattachment and two vortex streets regimes. Quoted values range from 3.0 (Kiya et al., 1980; King and

Johns, 1976) to 3.8 (Zdravkovich, 1977), all at roughly the same Reynolds number ðReE104Þ: This scatter of data is

likely due to the extreme sensitivity of the flow to Reynolds number, turbulence, and experimental setup and initial

conditions.

In the present study, the reattachment and two vortex streets flow regimes have been simulated in addition to the

transition region between them. Due to the strong influence of parameters such as free-stream turbulence and Reynolds

number and the lack of experimental data at this Reynolds number, no direct quantitative comparisons can be made.

Qualitative comparisons with experimental observations, however, are all good.

4.3.1. Reattachment regime

Four snapshots of particle traces for a tandem arrangement in the Reattachment regime ðL=D ¼ 2Þ are shown in

Fig. 5. As observed in experiments, vortices are alternatively formed and shed behind the downstream cylinder while a

stagnant recirculation region exists in the gap. The shear layers from the upstream cylinder reattach to the downstream

cylinder with the exact reattachment points oscillating in tune with the vortex formation.

In agreement with experiment, the low-pressure stagnant flow between the cylinders causes a negative drag of
%CD ¼ �0:39 on the downstream cylinder, i.e., the force in-line with the flow acts to pull the downstream cylinder

towards the upstream one. The fluctuating lift on the downstream cylinder is *CL ¼ 0:12: As the flow visualization in

Fig. 5 shows, vortex formation occurs several diameters away from the downstream cylinder which results in less severe

oscillations in lift. For the upstream cylinder, the lack of vortex shedding reduces the mean drag to %CD ¼ 0:92 and

minimizes the fluctuating lift to *CL ¼ 0:04: The Strouhal number for the downstream cylinder is St ¼ 0:17 which

indicates vortex shedding is occurring significantly slower than for an isolated cylinder.

4.3.2. Two vortex streets regime

Four snapshots of particle traces in the two vortex streets regime ðL=D ¼ 2:5Þ are shown in Fig. 6. In this

configuration, it is clear that vortices are being formed and shed from both cylinders. The vortices shed from the

upstream cylinder rapidly deform as they approach the downstream cylinder while an irregular vortex street is formed

in the wake of the downstream cylinder.

The lift and drag coefficients on the cylinders again shows excellent agreement with experimental observations. The

downstream cylinder experiences a reduced drag of %CD ¼ 0:17 due to the retarded wake flow, while the magnitude of lift

Fig. 5. Particle traces for reattachment regime, Re ¼ 1000; L=D ¼ 2:
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on that cylinder of *CL ¼ 2:24 exceeds that of an isolated cylinder due to the synchronization of vortex shedding behind
both cylinders. The upstream cylinder experiences lift and drag coefficients much closer to that of an isolated cylinder

ð %CD ¼ 1:43; *CL ¼ 1:35Þ; while the Strouhal number for both cylinders is St ¼ 0:22; slightly below the isolated cylinder

value.

4.3.3. Transition region

For certain tandem separations between L=D ¼ 2 and L=D ¼ 2:5; the bistable nature of the flow has been observed

numerically. For L=DE2:15; it is possible to drive the flow into either the reattachment or two vortex streets regimes by

selecting the initial conditions.

To achieve the reattachment regime, a steady solution at Re ¼ 100 is first obtained. This lower Reynolds number

result establishes the steady recirculation region between the cylinders. The Reynolds number is then slowly increased to

Re ¼ 1000: The resulting flow pattern, shown in Fig. 7(a), clearly indicates the reattachment regime. This state was

observed to be stable in the sense of persisting for over 1000 periods of vortex shedding.

To achieve the two vortex streets regime, the flow is impulsively started at Re ¼ 1000: In this case, the small

asymmetry in the mesh is sufficient to cause vortex shedding from the upstream cylinder to begin before the steady

recirculation region can be fully established. The final flow pattern, shown in Fig. 7(b), indicates the two vortex streets

regime. As before, this state persisted for over 1000 periods of vortex shedding.

Kiya et al. (1992) studied this bistable transition region at a Reynolds number of ReE3� 104 and showed that flops

between the regimes occurred on the order of every 103–104 shedding periods. The average time interval for which each

regime is observed was shown to increase as the Reynolds number or freestream turbulence was decreased. Thus, for the

laminar flow at Re ¼ 1000 considered here, the two regimes will be stable for extremely long periods of time. Thus, no

flopping between the states should be expected and none is observed.

4.3.4. Hysteresis

Another experimentally observable feature in the tandem orientation is the presence of a hysteretic effect. This is well

summarized by the following quote from Zdravkovich (1984):

One of the two flow regimes persisted longer when the velocity was increased or, at the same velocity when the

cylinder was displaced in one direction, and the other regime lasted longer when the opposite conditions were

Fig. 6. Particle traces for two vortex streets regime, Re ¼ 1000; L=D ¼ 2:5:

W. Jester, Y. Kallinderis / Journal of Fluids and Structures 17 (2003) 561–577 569



imposed. The hysteresis produced an apparent overlap of the two flow regimes although only one flow regime existed

at a time.

Using the interactive steering and dynamic mesh deformation/adaptation described in Section 3.6, it is possible to

numerically observe this hysteresis phenomenon. Fig. 8 and 9 show the drag coefficient on the upstream and

downstream cylinder as a function of L=D for either an increasing spacing (shown as circles) or decreasing spacing

(shown as exes).

The lower branch of the hysteresis is achieved by starting in the reattachment regime at L=D ¼ 1:9 and slowly

increasing the spacing to L=D ¼ 2:5 by moving the downstream cylinder at a velocity of 0.1% of the freestream velocity.

As Figs. 8 and 9 show, the reattachment regime is observed up to a spacing of L=DE2:38 at which point a rapid

transition to the two vortex streets regime occurs. This transition is indicated by a sharp increase in the drag coefficients

for both cylinders, consistent with experimental observations. The exact spacing of this transition differs from the
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Fig. 8. Hysteresis of upstream drag coefficient, Re ¼ 1000:

Fig. 7. Particle traces in bistable region, Re ¼ 1000; L=D ¼ 2:15:
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experimentally reported values of 3.0–3.8. As discussed above, this problem is extremely sensitive to Reynolds number,

turbulence, and experimental setup, so a precise match of the transition spacing is not expected. These results are

consistent with numerical results of Mittal et al. (1997) who found the two vortex streets regime at L=D ¼ 2:5 and

Re ¼ 1000 also.

To achieve the upper branch of the hysteresis, the cylinder pair is started in the two vortex streets regime at L=D ¼ 2:5
and the spacing is decreased to L=D ¼ 1:9 in the manner described above. In this case, the two vortex streets regime is

observed down to a spacing of L=DE2:0 at which point a transition to the reattachment regime occurs. Again,

consistent with experimental observations, a sharp decrease in the drag for both cylinders is observed during this

transition.

In the region 2:0oL=Do2:2 on the upper branch of the hysteresis, very irregular forces are observed on both the

upstream and downstream cylinders. To demonstrate this, two additional simulations were performed in this region

with different speeds of cylinder motion and the resulting drag coefficients are plotted on Figs. 8 and 9. In this region,

the vortex shedding behind the upstream cylinder is persistent but irregular. This indicates that the two vortex streets

regime becomes progressively more unstable as the spacing approaches the transition point at L=D ¼ 2:0: A similar

effect occurs near the transition from the reattachment regime at 2:2oL=Do2:4 but the irregularity in the flow field and

forces is far less significant.

Table 1 summarizes the mean drag, lift amplitude, and Strouhal number for the Re ¼ 1000 cases presented above,

along with the data for an isolated cylinder for comparison.
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Fig. 9. Hysteresis of downstream drag coefficient, Re ¼ 1000:

Table 1

Summary of data for Re ¼ 1000 tandem configurations

Upstream downstream

L=D %CD
*CL %CD

*CL St

2.0 0.92 0.04 �0.39 0.12 0.17

2.15 Reattach 0.92 0.09 �0.34 0.49 0.16

2.15 T.V.S 1.35 1.44 0.78 2.22 0.17

2.5 1.43 1.35 0.17 2.25 0.22

Isolated cyl. 1.51 1.40 0.25
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4.4. Side-by-side configuration

In side-by-side configurations, the two cylinders are oriented perpendicular to the incoming flow. In this

configuration, there are again three primary flow regimes according to the classification of Zdravkovich (1982) and

Chen (1987) as follows.

(i) Single body ðT=Dp1:2Þ: Similar to the tandem case, when the cylinders are placed side-by-side in extremely close

proximity, they behave as a single body with a single vortex street.

(ii) Biased gap ð1:2oT=Do2:0Þ: For intermediate spacings, the flow in the gap between the cylinders is deflected

towards one of the cylinders. Thus, two distinctive near wakes are formed, one wide wake and one narrow. The

particular direction of the bias will intermittently change, indicating another bistable state.

(iii) Coupled vortex streets ð2:0pT=Dp4Þ: In this region, two distinct vortex streets are formed. These vortex streets

are usually coupled in a symmetric manner, i.e., vortices are alternatively shed on the gap-side then the outside of

the cylinders.

In the present study, the biased gap and coupled vortex streets flow regimes have been simulated and analyzed at

Re ¼ 1000: Qualitative comparisons with experimental observations are excellent.

4.4.1. Biased gap regime

Particle traces for the biased gap regime ðT=D ¼ 1:5Þ are shown on Fig. 10. This figure shows four snapshots with the
gap flow biased downwards. Each bias tends to persist for between five and ten periods of vortex shedding, then a

transition to the other bias will tend to occur. The flopping between states occurs at time intervals roughly two orders of

magnitude shorter than those reported in experimental results by Kim and Durbin (1988) at Re ¼ 3500 and T=D ¼
1:75; although they are consistent with other numerical results of Chang and Song (1990). The reason for this

discrepancy is not clear.

The lift and drag coefficients and Strouhal numbers for the narrow and wide wake cylinders differ noticeably. For the

wide wake cylinder, the mean drag coefficient was found to be %CD ¼ 1:25 while the narrow wake cylinder had a

measured mean drag of %CD ¼ 1:85: The wide wake cylinder is also associated with smaller oscillations in the lift

coefficient ð *CL ¼ 0:55Þ and a smaller Strouhal number ðSt ¼ 0:23Þ than the narrow wake cylinder ð *CL ¼ 1:74;St ¼

Fig. 10. Particle traces for biased gap Regime, Re ¼ 1000; T=D ¼ 1:5:
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0:30Þ: These three results are all consistent with experimental observations (Bearman and Wadcock, 1973; Kiya et al.,

1980; Kim and Durbin 1988) and are due to the tighter formation of vortices in the near wake of the narrow wake

cylinder compared to that of the wide wake cylinder.

4.4.2. Coupled shedding regime

Four snapshots of particle traces for Re ¼ 1000; T=D ¼ 3 are shown in Fig. 11. The symmetric formation and

shedding of vortices as reported by Zdravkovich (1982) and Chen (1987) is clearly observed. Other experimental results

by Williamson (1985) show that an antisymmetric formation pattern is also possible, although he reports that the

symmetric (or antiphase) shedding is predominant. Only this form of shedding has been observed in the numerical

results.1

The two cylinders in this regime experienced identical drag coefficients of %CD ¼ 1:70 and Strouhal numbers of

St ¼ 0:26: The combined drag of the two cylinders exceeds double the value for an isolated cylinder, as determined

Fig. 11. Particle traces for coupled shedding regime, Re ¼ 1000; T=D ¼ 3:

Table 2

Summary of data for Re ¼ 1000 side-by-side configurations

T/D %CD
*CL St

1.5 Wide wake 1.25 0.55 0.23

1.5 Narrow wake 1.85 1.74 0.30

3.0 1.70 1.67 0.26

Isolated cyl. 1.51 1.40 0.25

1Future simulations of moving cylinder pairs showed that the antisymmetric pattern observed experimentally can also be reproduced

numerically if an in-phase oscillation is applied as an initial perturbation to the cylinders. These results will be presented in an

upcoming publication.
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experimentally by Biermann and Herrnstein (1933). The amplitude of oscillation in the lift coefficients was also identical

at *CL ¼ 1:67; although each cylinder also experiences a nonzero mean lift coefficient which applies a repulsive force to

the cylinder pair. Again, this shows excellent agreement with experimental observations from Bearman and Wadcock

(1973).

Table 2 summarizes the mean drag, lift amplitude, and Strouhal number for the Re ¼ 1000 side-by-side cases

presented above, along with the data for an isolated cylinder for comparison.

4.5. Staggered configuration

The staggered configuration, where both the longitudinal and transverse spacings are nonzero, is the most common

to occur in applications. Due to the limitless number of vastly different staggered configurations, relatively little

comprehensive work has been performed either experimentally or numerically. The most complete experimental

summary by Zdravkovich (1977, 1984) indicates three primary interference regions, as follows.

(i) Proximity interference is found in a side-by-side or slightly staggered arrangement with roughly four diameters of

separation or less. This is usually accompanied by an increase in the mean drag coefficient for both cylinders.

(ii) Wake interference is found when the downstream cylinder is situated in the wake of the upstream cylinder for

L=DX4: The downstream cylinder experiences an irregular, retarded flow which results in a reduced mean drag

coefficient. The forces on the upstream cylinder rapidly approaches that of an isolated cylinder as L=D is increased

while the drag on the downstream cylinder is reduced due to the retarded flow in the wake.

(iii) Proximity and wake interference occurs when the downstream cylinder is in the wake of the upstream cylinder

but L=Do4: In this region extremely small changes in cylinder spacings can result in large changes in flow features

and forces (Zdravkovich, 1977). This region includes the highly irregular bi-stable transition states described in

Section 4.2.

In the present study, a series of 51 staggered cases were run with 0pL=Dp7 and 0pT=Dp4: To efficiently simulate
this many different cases, a series of nine meshes and initial solutions were generated at a variety of spacings. Using the

interactive steering and automatic mesh deformation/adaptation described in Section 3.6, the spacings were changed

dynamically to each of the desired final values. At each spacing, the solution was run for at least 25 cycles of vortex

shedding or until a converged (periodic) solution was obtained.

The measured mean drag coefficient for each of the cases is shown on Fig. 12. Data to the right of the reference

cylinder at the origin represents drag values on the downstream cylinder while data to the left represents upstream

cylinder values. The tandem results described in Section 4.2 are included along the horizontal axis while the side-by-side

results from Section 4.4 are included along the vertical axis (including the bi-stable configuration represented by the two

different drag values at L=D ¼ 0 , T=D ¼ 1:5).
Fig. 12 also includes the rough boundaries between the different staggered interference regimes as given by

Zdravkovich (1977). Following Fig. 12, several observations consistent with experimental data are made.

T/D

L/D

-2-4-6

2

4

4

8-8 6

1.78

1.491.70

1.25
1.85

1.71

1.70

1.66

1.62 1.61

1.67

1.38

1.39

1.71

1.73

1.64

1.64

1.63

1.68

1.47

1.35

1.29

1.59

1.49

1.33

1.59

1.60

1.62

1.50 1.43

1.15

0.60

-.06

1.14

1.30

0.85

-.39 0.17 0.16 0.16 0.17

0.66

0.85

1.16

1.52

1.571.56

1.48

1.20

0.88

0.590.52

0.86

1.04

1.44

1.551.6

1.23

1.00

0.83

0.93

1.42

1.541.49

1.47

1.47

1.44

1.43

1.45 1.43 1.42 1.43 0.92

0.96

1.00

1.32

0.97

0.98

1.10

1.17

1.53

1.531.49

1.46

1.06

1.29

1.39

1.46

1.471.46

1.45

1.45

1.41

1.381.42

1.43

1.45

1.45

1.46

1.50

0.86

1.17

0.84

0.25 0.33

0.92

1.14

0.18

1.50

1.49

1.50

1.48

1.48 1.45

1.45

1.48

1.49

C B

D

A

A

D
C
B

Proximity Interference

Wake Interference

Proximity and Wake Interference

No Interference

Fig. 12. Mean drag coefficients for Re ¼ 1000 staggered arrangements with boundaries of interference regimes.
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5. Conclusions

This paper has presented the results of an extensive numerical investigation into interference effects between cylinder

pairs. The numerical method, based on a second order SUPG projection scheme, coupled with interactive simulation

tools and dynamic meshes, has allowed for an unprecedented study of the problem.

Direct quantitative comparison with available low Reynolds number results have been encouraging. Furthermore,

the first extensive numerical observation of flow physics such as bi-stable flowstates and hysteresis effects in flow about

cylinder pairs has been demonstrated. An extensive series of 51 simulations in various staggered arrangements was also

performed, which demonstrated the correct prediction of both wake-interference and proximity-interference effects.

Although the exact spacings and force coefficients associated with these flow regimes cannot be matched exactly with

experimental results which include turbulent and 3-D effects, the correlation of flow regimes and trends in force

coefficients show good agreement.

These results lead to the conclusion that numerical simulation of unsteady incompressible flows is capable of

reproducing in great detail the complex unsteady interactions between bluff bodies. Furthermore, the interactive

simulation techniques developed in this work allow the rapid simulation of a large number of configurations and a

detailed study of transitional states between known interference regimes.

The natural extension of this work is to consider the effects of interference on structural response and vortex-induced

vibrations. This work is well underway, using the existing methods for mesh movement to accommodate arbitrary flow-

induced motion of both bodies. Ultimately, this effort should lead to a deeper understanding of interference effects in

actual engineering applications.
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